Classical and quantum non-autonomous mechanics with respect to different reference frames is formulated in terms of fibre bundles over the time axis

**.***R*The file Library2.pdf (7 Mb) contains the attached PDF files of my main works in classical and quantum time-dependent (non-autonomous) mechanics.

G.Giachetta, L.Mangiarotti and G.Sardanashvily, Singapore , 2005)

*Geometric and Algebraic Topological Methods in Quantum Mechanics*(World Scientific,G.Giachetta, L.Mangiarotti and G.Sardanashvily, Singapore , 2010)

*Geometric Formulation of Classical and Quantum Mechanics*(World Scientific,G.Sardanashvily, Hamilton time-dependent mechanics,

*J. Math. Phys*.**39**(1998) 2714-2729G.Giachetta, L.Mangiarotti and G.Sardanashvily, Non-holonomic constraints in time-dependent mechanics,

*J. Math. Phys*.**40**(1999) 1376-1390L.Mangiarotti and G.Sardanashvily, On the geodesic form of second order dynamic equations,

*J. Math. Phys*.**41**(2000) 835-844L.Mangiarotti and G.Sardanashvily, Constraints in Hamiltonian time-dependent mechanics,

*J. Math. Phys*.

**41**(2000) 2858-2876

G.Sardanashvily, Classical and quantum mechanics with time-dependent parameters,

*J. Math. Phys*.**41**(2000) 5245-5255G.Giachetta, L.Mangiarotti and G.Sardanashvily, Covariant geometric quantization of nonrelativistic time-dependent mechanics,

*J. Math. Phys*.**43**(2002) 56-68G.Giachetta, L.Mangiarotti and G.Sardanashvily, Geometric quantization of mechanical systems with time-dependent parameters,

*J. Math. Phys*.**43**(2002) 2882-2894G.Giachetta, L.Mangiarotti and G.Sardanashvily, Geometric quantization of completely integrable Hamiltonian systems in action-angle coordinates,

*Phys. Lett. A***301**(2002) 53-57G.Giachetta, L.Mangiarotti and G.Sardanashvily, Action-angle coordinates for time-dependent completely integrable Hamiltonian systems,

*J. Phys. A***35**(2002) L439-L445E.Fiorani, G.Giachetta and G.Sardanashvily, Geometric quantization of time-dependent completely integrable Hamiltonian systems,

*J. Math. Phys*.**43**(2002) 5013-5025E.Fiorani, G.Giachetta and G.Sardanashvily, The Liouville -- Arnold -- Nekhoroshev theorem for non-compact invariant manifolds,

*J. Phys. A***36**(2003) L101-L107G.Giachetta, L.Mangiarotti and G.Sardanashvily, Jacobi fields of completely integrable systems,

*Phys. Lett. A***309**(2003) 382-386G.Giachetta, L.Mangiarotti and G.Sardanashvily, Bi-Hamiltonian partially integrable systems,

*J. Math. Phys*.**44**(2003) 1984-1987G.Giachetta, L.Mangiarotti and G.Sardanashvily, Nonadiabatic holonomy operators in classical and quantum completely integrable systems,

*J. Math. Phys*.**45**(2004) 76-86E.Fiorani and G.Sardanashvily, Noncommutative integrability on noncompact invariant manifolds,

*J. Phys. A***39**(2006) 14035-14042G.Giachetta, L.Mangiarotti and G.Sardanashvily, Quantization of noncommutative completely integrable systems,

*Phys. Lett. A***362**(2007) 138-142E.Fiorani and G.Sardanashvily, Global action-angle coordinates for completely integrable systems with noncompact invariant submanifolds,

*J. Math. Phys*.**48**(2007) 032901L.Mangiarotti and G.Sardanashvily, Quantum mechanics with respect to different reference frames,

*J. Math. Phys*.**48**(2007) 082104G.Sardanashvily, Superintegrable Hamiltonian systems with noncompact invariant submanifolds. Kepler system,

*Int. J. Geom. Methods Mod. Phys*.**6**(2009) 1391-1420G.Sardanashvily, Relativistic mechanics in a general setting,

*Int. J. Geom. Methods Mod. Phys***.****7**(2010) 1307-1319
It is a very informative and useful post thanks it is good material to read this post increases my knowledge

ReplyDelete